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Traditionally, scientists have placed more emphasis on communicating inferential uncertainty
(i.e., the precision of statistical estimates) compared to outcome variability (i.e., the predictability
of individual outcomes). Here we show that this can lead to sizable misperceptions about the
implications of scientific results. Specifically, we present three pre-registered, randomized experiments
where participants saw the same scientific findings visualized as showing only inferential uncertainty,
only outcome variability, or both, and answered questions about the size and importance of findings
they were shown. Our results, comprised of responses from medical professionals, professional data
scientists, and tenure-track faculty, show that the prevalent form of visualizing only inferential
uncertainty can lead to significant overestimates of treatment effects, even among highly trained
experts. In contrast, we find that depicting both inferential uncertainty and outcome variability
leads to more accurate perceptions of results while appearing to leave other subjective impressions of
the results unchanged, on average.
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Much of science is concerned with making inferences
about entire populations using only samples from them.
For instance, a medical trial might compare the health
of patients who were given an experimental treatment to
those who received a placebo, or a social science study
might contrast the economic mobility of individuals from
different demographic groups. In each case the goal is
to draw conclusions about the broader populations of in-
terest, but this is often complicated by two factors: first,
access to relatively small samples from these populations,
and second, highly variable outcomes within each group.
For example, a medical study might involve only a few
dozen patients, and some patients who received the ex-
perimental treatment might have responded strongly to
it while others did not.

Perhaps the most common solution to these problems
is to focus on aggregate outcomes (e.g., averages within
each group) instead of individual outcomes, and to re-
port some measure of inferential uncertainty about them
(e.g., how precisely we have estimated the average for
each group). Reporting inferential uncertainty (typically
through standard errors, confidence intervals, Bayesian
credible intervals, or similar) has long been a cornerstone
of statistics and constitutes a major part of introductory
courses on the topic [1]. Quantifying inferential uncer-
tainty is important for many reasons, from providing a
plausible range of values for a quantity of interest to
helping us avoid being misled by random variation in
samples of data that may not accurately reflect trends in
the underlying populations of interest.

At the same time, focusing on only aggregate outcomes
and inferential uncertainty might lead us to overlook out-
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come variability (e.g., how much individual outcomes vary
around averages for each group), often quantified by mea-
sures such as standard deviation or variance, and which
is important for understanding effect sizes and the pre-
dictability of outcomes. Although there are systematic
relationships between measures of inferential uncertainty
and outcome variability, they capture two very different—
but easily confused—concepts. Here we investigate the
extent to which the pervasive focus on inferential un-
certainty in scientific visualizations can produce illusory
impressions about the size and importance of scientific
findings, even among experts whose jobs involve creating
and interpreting such results.

To highlight the difference between inferential uncer-
tainty and outcome variability—and to see why focusing
on the former might be misleading about the latter—
consider the plot in the upper left panel of Figure 1,
inspired by a highly-cited study on whether violent video
games cause aggressive behavior [2]. In the study partic-
ipants were randomly assigned to play either a violent
or a non-violent video game, after which their behavior
on an unrelated task was measured using a continuous
aggressiveness score. The two black points in this plot
show estimated average aggressiveness within each group
and the error bars encode inferential uncertainty about
those estimates (one standard error above and below the
average). Compare this to the plot in the upper right
panel of Figure 1, which depicts the same averages and
error bars, but adds colored points to show individual
outcomes as well.

In principle there is no reason to prefer one of these
plots to the other—in fact, given the sample sizes and a
few distributional assumptions, one can calculate infor-
mation about either inferential uncertainty or outcome
variability from each. In practice, however, each of these
representations has distinct visual features that empha-
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FIG. 1. Inferential uncertainty vs. outcome variability (Left) Estimated means and an error bar representing one
standard error (SE) above and and one SE below the mean, for two conditions in an experiment. The SE is a measure of the
uncertainty in our inference of the mean. (Right) Individual outcomes shown in addition to the same SEs on the left. With
only 50 participants per condition (top), we have less confident estimates for the mean than when we have 400 participants per
condition (bottom). However, more data does not systematically decrease the variability in the outcomes themselves.

size different notions of uncertainty and lends itself to
different interpretations. In particular, the format on the
left is designed to facilitate “inference by eye” [3–5], so
that readers can deduce a range of plausible values for the
average in each group and apply visual heuristics for hy-
pothesis testing. By applying a rough heuristic, the lack
of overlap of the error bars is taken as evidence against the
idea that there is no difference in average aggressiveness
scores between conditions. That said, displaying the error
bar as a single visual object (arms capped off on either
end), with the mean at its center, focuses perception on
that object as itself a representation of the relevant data,
and since the object is bounded at the ends of the error
bar, such a display encourages the viewer to imagine that
the underlying data must cluster more tightly around
the mean than it actually does. (In fact, the majority
of the individual data points would be above and below

the range of the y-axis scale and thus not even visible.)
As a result, one might look at the plot on the left and
conclude that violent videogames cause aggressive behav-
ior, and indeed popular outlets that covered this work
featured strongly-worded headlines to this effect (see [6],
for example).

The figure on the right contains all of the information
present in the plot on the left, but simply adds points that
show individual outcomes. This format was suggested
by Gardner and Altman several decades ago [7] to place
more emphasis on communicating sample size, outcome
variability, and effect sizes. There have since been sev-
eral efforts to popularize these types of plots [8–12], but
they remain relatively uncommon and, to the best of our
knowledge, have not been empirically tested. The dots
draw some attention away from the object represented by
the error bars, and the contrast (in color and intensity)
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between the dots and the bar make it easy to focus on
either the individual points or the mean and error bar,
to shift attention between them, and to see that the bar
does not represent the entirety of the data, merely one
particular facet of it.

Specifically, adding individual outcomes highlights that
while there is relatively low inferential uncertainty in
this study (i.e., the average in each group is precisely
estimated), there is still a great deal of outcome variability
within each group (i.e., individual outcomes vary quite a
bit around their respective averages). So much so, in fact,
that one has to rescale the y-axis just to accommodate
the range of outcomes, providing some perspective for
the difference in means between conditions. “Inference by
eye” is still possible in this alternative representation, but
it also makes clear that while violent video games may
change aggressive behavior on average, the relationship is
far from deterministic: knowing only if someone played a
violent video game or not says relatively little about how
aggressively they might behave.

Moreover, as depicted in the bottom row of Figure 1,
this divergence between inferential uncertainty and out-
come variability actually grows with sample size. For
instance, if we were to conduct a larger study—as is more
commonplace today compared to when the original study
was done—and sample 800 participants instead of 100,
we would get extremely precise estimates of averages in
each condition (indicated by the small error bars in the
bottom left panel), but, as the bottom right panel shows,
collecting more data would not systematically decrease
outcome variability.

As these examples demonstrate, differences in what
visualizations emphasize might lead readers to different
conclusions. So which one of these formats should we
prefer when presenting statistical findings to readers, and
how much does this choice matter? While there is a large
body of literature in the fields of data visualization and
human-computer interaction on different ways of depicting
either inferential uncertainty or outcome variability [13–
15], to the best of our knowledge there is little empirical
work that compares the two. In many fields there is
an emphasis on inference and hypothesis testing, and so
plots displaying inferential uncertainty are the default and
considered a “best practice” [16–18]. At the same time,
there is an increasingly large body of research showing that
people routinely make mistakes when making inferences
based on such plots. For instance, when shown these plots,
people often mis-estimate the range of plausible values
for a parameter and draw incorrect conclusions related
to hypothesis testing and the replicability of scientific
findings [13, 14, 19–21]. As a result, it may be the case
that plots designed to convey inferential uncertainty may
in fact not be very effective for statistical inference.

Here we raise a different but potentially more important
concern. Beyond being unreliable for traditional statisti-
cal inference tasks, the pervasive preference for communi-
cating inferential uncertainty found in published work can
lead to an “illusion of predictability” [22], whereby people

underestimate the variability of outcomes and overesti-
mate the size and importance of scientific findings. In
particular, if a reader mistakes inferential uncertainty
for outcome variability when viewing the plots like those
on the left of Figure 1, they might be left with the
impression that most outcomes fall within the depicted
error bars and conclude that violent video games have
an alarmingly strong effect on aggressive behavior, with
predictable outcomes in each condition. The plots on the
right hopefully avoid this confusion, showing that such a
strong conclusion may not be warranted. In this example,
seeing the comparison side-by-side should help clarify the
distinction between inferential uncertainty and outcome
variability. In practice, however, it is common for figures
to depict only one type of uncertainty, a choice which is
often not even explicitly stated [23, 24]. Moreover, there
are many published examples where authors themselves
mistake the two concepts, errantly labeling standard devi-
ations as standard errors or vice versa [25]. This can leave
the reader guessing as to what is being communicated—a
task that is not helped by the fact that the terms involved
sound similar (e.g., “standard error” versus “standard
deviation”), or that they are often both depicted by the
same visual marks in plots (e.g., error bars).

Recent work has shown evidence of this confusion
among laypeople: in a series of large-scale, online ex-
periments, participants overestimated the effectiveness
of, and were willing to pay more for, the same hypothet-
ical treatment when shown visualizations that depicted
inferential uncertainty compared to outcome variability,
even when controlling for other visual factors such as
the scale of the y-axis [26, 27]. However, these studies’
participants were laypeople (crowd workers), not profes-
sors or practitioners trained in statistics. In addition, the
studies involved fictitious, low-stakes scenarios. There is
good reason to imagine that these effects might disappear
with appropriate training or in sufficiently consequential
settings, in which case they would be of much less concern.
Here we investigate the extent to which visual displays of
inferential uncertainty versus outcome variability affect
judgments by experts in more realistic, high-stakes sce-
narios. Specifically, we present a series of pre-registered,
randomized experiments where experts saw the same sci-
entific findings depicting different types of uncertainty and
answered a series of questions about the size and impor-
tance of findings they were shown. Our results, comprised
of responses from medical professionals, professional data
scientists, and tenure-track academic faculty, show that
the prevalent form of visualizing only inferential uncer-
tainty can lead to significant overestimates of treatment
effects, even among highly trained and knowledgeable ex-
perts. In contrast, we find that an alternative format that
depicts both inferential uncertainty (by showing statisti-
cal estimates) and outcome variability (by also showing
individual data points) leads to more accurate percep-
tions of results while appearing to leave other subjective
impressions of the results unchanged, on average. We con-
clude with a discussion of how this relates to larger issues
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around practical vs. statistical significance, inference vs.
prediction, and scientific communication.

RESULTS

We conducted three pre-registered experiments to inves-
tigate how the graphical communication of different types
of uncertainty affects experts’ perceptions of the size and
importance of scientific findings. All three experiments
used similar experimental setups but with different types
of experts. In each experiment participants were shown
the results of a study that compared a treatment group to
a control group, where we randomly varied whether the
figure in the study depicted inferential uncertainty (via
standard errors), outcome variability (via standard devia-
tions or individual data points), or both. After reviewing
the study, participants were asked to estimate the effec-
tiveness of the treatment shown in the study and make
additional decisions based on the findings they saw. In all
three studies we elicited perceived treatment effectiveness
by asking for the probability that a randomly selected
member of the treatment group had a higher (or lower)
score than a randomly selected member of the control
group, a number between 50% and 100% known as the
common language effect size, probability of superiority, or
AUC. We chose this measure because it was developed to
aid in the communication of effect sizes and thus provides
an easy and effective means of eliciting effect sizes from
participants [28, 29]. Pre-registrations for the three ex-
periments are available online.[30] The code to generate
stimuli and run our experiment is available online along
with the code and data to reproduce our analysis.[31]
The “Materials and Methods” section and Section S2 of
the Supporting Information contain full details of the
experimental design and analyses.

Experiment 1: Medical providers

For our first experiment we recruited medical providers
with prescribing privileges employed at a regional health-
care system. All participation was voluntary and no
direct payment was made; instead we donated Thanks-
giving meals to a local food bank for each completion
of the study. We performed eleven 30-minute structured
interviews with physicians about the task to ensure that it
was realistic, familiar, and easy-to-understand (see SI S3).
Those who participated were randomly assigned to see
the results of a hypothetical trial for either blood pressure
or COVID-19 medications. All participants saw the same
information about the corresponding medication type,
but some were randomly assigned to see accompanying
figures depicting inferential uncertainty first (means and
standard errors, in the “Saw SEs first” condition) while
others were shown figures depicting outcome variability
first (means and standard deviations, in the “Saw SDs first”
condition) (Figure S1). Participants were then asked to

estimate the probability of superiority for the medication
they were shown along with how much it would be worth
to patients. They were also asked to recall what the error
bars in the figures represented and to provide a histogram
of outcomes for patients in the treatment and control
groups using a tool called Distribution Builder [32–34].
After completing these tasks, participants were shown
“another scenario” for the same type of medication and
repeated the entire process. Although not revealed to
them, the second scenario was identical to the first except
for the accompanying figure—those in the “Saw SEs first”
condition were subsequently shown the same results but
with SDs in the accompanying figure, whereas those in
the “Saw SDs first” condition were shown SEs. The study
concluded with a background survey to gauge participants’
medical experience and statistical training.

Of the 221 participants who fully completed the study,
we removed 58 participants who indicated that they had
completed the study more than once, which occurred due
to a web browser incompatibility in our experiment code,
leaving 163 participants.[35] Most participants were medi-
cal doctors with at least some experience with randomized
controlled trials (Fig. S9).

Comparing participants’ probability of superiority esti-
mates for the first scenario they saw, we find that average
estimates were substantially higher for those who saw
SEs (depicting inferential uncertainty) first compared
to those who saw SDs (depicting outcome variability)
first (Fig. 2A). With both medications, participants who
saw SEs overestimated the size of the effects they were
shown, whereas those who saw SDs underestimated those
same effects. For the blood pressure medication, with
a true value of 72%, average estimates were 88.5% for
SEs vs. 65.9% for SDs (t(65.09) = 6.83, p < .001). For
the COVID-19 medication, with a true value of 76%,
average estimates were 85.9% for SEs vs. 67% for SDs
(t(77.90) = 6.35, p < .001).

As shown in Fig. 2A, this roughly 20 percentage point
difference in average estimates between conditions is
largely driven by a sizeable and statistically significant
difference in extreme responses, defined as estimates that
exceeded 90%, from those who saw SEs compared to those
who saw SDs (t(65.94) = 6.27, p < .001). For both sce-
narios, the majority of participants who saw SEs made
extreme responses, whereas a small minority of those who
saw SDs did so. A within-subjects analysis comparing
how much each participant’s estimate of the probability
of superiority changed between the two scenarios they
saw reveals a similar pattern (Fig. S3). Responses to the
recall question indicate that these differences are likely
due to participants mistaking SE error bars for show-
ing outcome variability instead of inferential uncertainty
(Fig. S6), with only 36% of participants who saw SEs first
correctly recalling the type and meaning of the error bars
they were shown, which is worse than chance. This is
consistent with the responses we collected via Distribution
Builder, depicted in Fig. 2C, which show that those who
saw SEs first generated narrower outcome distributions
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FIG. 2. Results for medical providers (A) The estimated
probability of superiority of each treatment is depicted for each
provider, with black dot and error bars signifying the mean
and one SE above and below the mean, as well as dashed lines
representing the true underlying effect size. (B) The perceived
value of treatment is shown with a logarithmic y axis, and the
black dot and error bars depict the mean and one SE above
and below the mean. (C) Perceived distributions (bars) versus
actual distributions (line) of the effectiveness of treatment.

(and higher implied probabilities of superiority) overall
compared to those who saw SDs first (t(160) = −4.92,
p < .001).

Interestingly, however, these large differences in per-
ceived effectiveness were not reflected in estimates of how
much participants thought patients would value these
treatments, perhaps because there are strong conventions
for how much different medications should cost regardless
of effectiveness. Participants who first saw SEs were not
willing to pay a median price that was significantly dif-
ferent from participants who first saw SDs for either the
blood pressure medication (Z = 1.38, p = 0.084) or the
COVID-19 medication (Z = 0.848, p = 0.198). Further
analyses, including participant feedback, is available in

the Supporting Information, Section S1 A.
Overall the results of this experiment demonstrate that

even medical professionals can be misled by common vi-
sualizations that depict inferential uncertainty. That said,
this experiment has several limitations. First, many of
the participants in our studies indicated only moderate
training in and comfort with statistics, and so perhaps
we would expect different results from experts with more
rigorous statistical backgrounds. Second, although the
figures that displayed outcome variability directly through
SDs curbed extremely high estimates of effect sizes, es-
timates were on average below the true effect size when
outcome variability was displayed using SDs. Third, we
tested only one true underlying effect size in this study.
We designed our second experiment to address these con-
cerns by targeting experts with more statistical training,
exploring alternative formats that depict both inferential
uncertainty and outcome variability, and testing a wide
range of true underlying effect sizes.

Experiment 2: Data scientists

For our second experiment we recruited professional
data scientists at a large software company. All partici-
pation was voluntary and no direct payment was made;
instead we donated one set of personal protective equip-
ment to the United Nations COVID-19 relief effort on
behalf of each participant who completed the study. Those
who participated saw a one-page extended abstract based
on the violent video game study described above. All
participants saw the same abstract, but some were ran-
domly assigned to see an accompanying figure depicting
only inferential uncertainty (means and standard errors
in the “SE only” condition, as in the lower left of Fig-
ure 1) whereas others saw both inferential uncertainty
and outcome variability (means, standard errors, and in-
dividual outcomes in the “SE + points” condition, as in
the lower right of Figure 1). We designed the latter to
test whether this format, originally proposed by Gardner
and Altman [7], would lead to more accurate perceptions
of effect sizes than SEs or SDs alone. Then we asked
participants for their editorial judgments on the abstract,
including the overall appeal of the work, the sufficiency
of the sample size used, and whether they would accept
the extended abstract if they were a journal editor, all
on 5-point Likert scales. Following this, we asked partici-
pants to estimate the size of the effect presented in the
abstract, measured by the probability that someone who
played a violent video game displayed more aggressive
behavior than someone who played a non-violent video
game (the probability of superiority), and to recall what
the error bars in the figure represented. Finally, we had
participants repeat probability of superiority estimates
for five randomly generated figures of the same type that
they saw in the abstract to explore how estimates change
with the true underlying effect size.

A total of 175 participants finished Part 1 of the exper-
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iment, 161 participants finished Part 2, and 138 partici-
pants completed the post-experiment background survey.
The majority of participants had upwards of three years
of experience working in data science and reasonable prior
experience with statistics (Fig. S10, middle). As per our
pre-registration, we removed 2 participants who indicated
that they had none of the prior experience in statistics or
scientific literature that we screened for.

In line with our first experiment, we find that on aver-
age participants who saw only inferential uncertainty (in
the SE only condition) made substantially higher prob-
ability of superiority estimates compared to those who
saw both inferential uncertainty and outcome variability
(in the SE + points condition) (t(159.36) = 6.34, p <
.001). Moreover, responses in the SE + points condi-
tion were well calibrated to the true effect size of 59%
(mean = 60.6%,SD = 12.6%), whereas we once again
find overestimation with the conventional SE only format
(mean = 76.4%,SD = 19.9%). This more than 15 percent-
age point difference in average estimates is apparent in
extreme responses as well: only 6% of participants in the
SE + points condition provided probability of superiority
estimates that exceeded 90%, while 35% of participants in
the SE only condition did so (t(142.47) = 5.11, p < .001).

Despite these rather large differences in perceived effect
size, we do not see a corresponding difference in average
editorial opinion between conditions (Fig. 3B). Specifically,
we did not find evidence that the SE + points format
changed the average appeal of the work (t(168.62) =
−1.56, p = .120), the average perceived sufficiency of sam-
ple size (t(152.85) = −0.88, p = .380), or the average
overall recommendation (t(171.26) = 0.52, p = .604) com-
pared to the SE only format. However, in a post hoc
analysis we did find a systematic correlation between how
large a participant perceived the effect presented in the
study to be and their overall editorial recommendation
(see Supporting Information Section S1 B).

As with our first experiment, participants showed a
reasonable degree of confusion about both the type of
error bars they saw and how to interpret them. Only 55%
of people in the SE only condition and 51% of people
in the SE + Points condition correctly responded that
the error bars represented uncertainty in the estimation
of the average, rather than variability in outcomes (see
Supporting Information Section S1 B).

To check whether any differences between conditions
was specific to the study in the extended abstract that we
showed participants, or to the true underlying effect size
of 59% for that study, we also showed each participant
five additional figures with different (randomly generated)
true underlying effect sizes ranging from 50–75%. In line
with our previous findings, those who saw only SEs sys-
tematically overestimated the size of the effects they were
shown, whereas those in the SE + points condition were,
on average, well calibrated (Fig. 3C). A mixed effects
model fit to predict absolute error in responses based
on experimental condition and the true underlying effect
size (both as fixed effects) and participant identity (as

a random effect; see Materials and Methods) confirms
this: participants in the SE + points condition made esti-
mates that were on average 11 percentage points (95% CI:
[8.23, 13.7]) closer to the true probability of superiorities
compared to participants in the SE only condition. As
with the extended abstract, participants who saw SEs only
responded with a bimodal pattern, where a large cluster
of extreme responses over 90% raised the overall average.
In the SE + points condition, only 3.7% of responses were
extreme, while 37% of responses in the SE only condition
were extreme (t(500.26) = 12.54, p < .001). Further de-
tailed analyses and participant feedback are available in
the Supporting Information (see Section S1 B).

Experiment 3: Faculty

Our third and final experiment was identical to the pre-
vious experiment, but involved academic tenure-track fac-
ulty instead of professional data scientists. We recruited
US tenure-track faculty from PhD-granting institutions
in the fields of psychology, sociology, physics, biology,
business, and computer science. Once again, all partici-
pation was voluntary and no direct payment was made,
we instead donated personal protective equipment to the
United Nations COVID-19 relief effort on behalf of each
participant who completed the study.

A total of 368 participants completed Part 1 of the
experiment, 339 participants completed Part 2, and 289
participants completed the optional background survey.
Participants reported being highly experienced with the
scientific process, with the modal participant indicating
that they had performed over 100 peer reviews (Fig. S11).
As per our pre-registration, we removed 63 participants
who indicated that they were not currently tenure-track
faculty, had no prior coursework in statistics, no experi-
ence conducting statistical analyses, or had never peer-
reviewed a paper.

In line with our previous findings, participants in the
SE only condition made substantially higher probability
of superiority estimates (mean = 76.4%,SD = 19.9%)
compared to those in the SE + points condition (mean =
60.6%,SD = 12.6%) on average (t(159.36) = 6.34, p <
.001), and responses in the SE + points condition were well
calibrated to the true value of 59% (Fig. 3D). Similarly,
while 6% of participants in the SE + points condition
provided probability of superiority estimates of 90% or
greater, 35% of participants in the SE only condition
did so, a statistically significant difference (t(142.47) =
5.11, p < .001).

Despite differences in perceived effect size by condi-
tion, we do not find a corresponding difference in average
editorial opinion (Fig. 3E). Specifically, we did not find
evidence that the SE + points format changed the aver-
age appeal of the work (t(168.62) = −1.56, p = .120), the
average perceived sufficiency of sample size (t(152.85) =
−0.88, p = .380), or the average overall editorial recom-
mendation (t(171.26) = 0.52, p = .604). Mirroring the
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FIG. 3. Results for data scientists and faculty (A, D) Perceived probability of superiority of the experiment in the editorial
judgment task between the conditions for data scientists and faculty, respectively. The black dot displays the mean, and the
error bars are one standard error above and below the mean. The dotted line is the true probability of superiority of the
underlying scenario. (B, E) Distributions of the editorial judgments between the two conditions for data scientists and faculty,
respectively. The dot and error bars above the plots show the mean and one standard error above and below the mean. (C,
F) For each of a series of hypothetical experiments with results generated from a random true probability of superiority, data
scientists and faculty (respectively) estimated the true probability of superiority. The dotted line displays the correct answers.
The colored line is a loess fit to the data, and the shaded region is a 95% confidence interval.

post hoc analysis from the previous experiment, we did
find a systematic correlation between how large a partici-
pant perceived the effect presented in the study to be and
their overall editorial recommendation (see Supporting
Information Section S1 C).

As with our earlier experiments, participants showed a
reasonable degree of confusion about the specific meaning
of the error bars that they saw (see Supporting Informa-
tion Section S1 C). In contrast to our previous experiment,
however, we saw less confusion about the meaning of error
bars for those in the SE + points condition compared to
those in the SE only condition: 57.8% of participants in
the SE only condition and 71% of participants in the SE
+ points condition recalling the correct meaning of the
error bars (t(363.70) = −2.67, p = .008).

The second part of the experiment, which explored a
wide range of true underlying effect sizes, showed a similar
pattern to the previous experiment: participants in the SE
+ points condition made estimates that were on average
5.9 (95% CI: [4.11, 8.61]) percentage points closer to the
true probability of superiorities compared to participants
in the SE only condition, using the same mixed effects
model as in the previous experiment (Fig. 3F). Extreme
estimates drive this average difference: whereas only 5.4%
of responses in the SE + points condition were above 90%,

22% of the responses were as extreme (t(1, 362.43) = 9.68,
p < .001). Further detailed analyses and participant feed-
back are available in the Supporting Information (Section
S1 C).

DISCUSSION

Taken together, the results of these three pre-registered
experiments highlight a serious concern for the current
state of scientific communication. Specifically, the per-
vasive focus on inferential uncertainty in scientific data
visualizations can mislead even experts about the size and
importance of scientific findings, leaving them with the
impression that effects are larger than they actually are.
This “illusion of predictability” is likely due to readers
confusing the concepts of inferential uncertainty and
outcome variability, and consequently mistaking precise
statistical estimates for certain outcomes. Fortunately we
have identified a straightforward solution to this problem:
when possible, visually display both outcome variability
and inferential uncertainty by plotting individual data
points alongside statistical estimates.

There are, of course, several limitations to our work and
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to the accompanying recommendation of plotting individ-
ual outcomes. First, with regards to editorial judgments
we tested only one extended abstract scenario. It could
be the case that for another scenario, editorial opinions
actually change along with the visual representation cho-
sen to accompany the text. For example, perhaps there
is a more polarizing setting for which people have weaker
priors about the effect size and would be swayed more
by visualizations of one type over the other. That said,
if this were the case we would argue that the represen-
tation that results in the most veridical perceived effect
size should be chosen, as this would lead reviewers to
make the most well-informed decision possible about the
merits of the work.[36] Likewise, these effects could be
different in a “real stakes” settings (e.g., when actually
reviewing for a high-stakes journal or making business de-
cisions about the quality of a data analysis) compared to
the hypothetical situation we presented our participants
with. Another limitation of the settings we investigate
concerns the ground truth effect sizes. While the values
in our stimuli are similar in magnitude to those commonly
found in medicine, neuroscience, psychology, and social
sciences generally [27], we do not make claims of an illu-
sion of predictability at considerably different effect sizes.
However, investigating effect sizes that rarely occur in
publications would have lower relevance for practice. In
addition, there are cases where plotting individual out-
comes is not as easy as it sounds. For instance, large
datasets or extreme data skew can make it challenging
to present all (or even a reasonable fraction of) the data
in a way that allows one to see individual observations
alongside statistical estimates. There are also compli-
cations when studying marginal effects while fixing or
averaging over other factors, although techniques such
as partial dependency plots could be adapted for these
settings [37, 38]. Finally, there is the opportunity to study
other visual encodings of uncertainty, including gradient
and violin plots [14], hypothetical outcome plots [39], and
quantile dot plots [40]. These limitations aside, we still
endorse the idea that one should show outcome variability
when possible, preferably by plotting individual outcomes
alongside statistical estimates.

Our findings provide a clear and important opportunity
to improve how statistical visualizations are presented to
laypeople and experts alike. Such improvements should
increase audience comprehension without sacrificing the
details displayed in conventional plots. Having identified
this problem and a solution to it, we might ask why it is
has gone unnoticed for so long. Our conjecture is that this
specific issue, while centered around data visualization,
reflects a broader issue around how science is done and
how scientific results are communicated.

Specifically, in many fields there has been a longstand-
ing emphasis on inference (e.g., obtaining unbiased esti-
mates of individual effects) over prediction (e.g., forecast-
ing future outcomes), perhaps in part because prediction
can be quite difficult, especially when compared to in-
ference. It is surely easier to estimate an average effect

across a large population, as is done in standard statistical
inference, than it is to predict individual outcomes given
all measurable factors that might be relevant to a given
problem. But when the results of a study are commu-
nicated, they can often come across as having implied
the latter when in fact they have only established the
former. As a result there can be a great deal of confusion
as to what we have actually learned about the world from
a particular study, and as we have demonstrated, even
experts mistake inferential visualizations as communicat-
ing information about prediction. Borrowing from Jacob
Cohen’s critique of hypothesis testing [41], we believe a
similar logic applies to the display of inferential uncer-
tainty:“Among many other things, it does not tell us what
we want to know, and we so much want to know what we
want to know that, out of desperation, we nevertheless
believe that it does!”

To this end we believe that the solution of communicat-
ing both inferential uncertainty and outcome variability
is merited. Rather than emphasizing inference over pre-
diction (or vice versa), we should aim for integrative
approaches that consider both aspects of scientific in-
quiry [42], and present them clearly alongside each other
so that readers can themselves make accurate and appro-
priate inferences from them.

MATERIALS AND METHODS

The Institutional Review Board of Microsoft Corpo-
ration reviewed the protocol of these experiments and
approved them for human subjects research under ap-
proval Ethics Review Portal #10159. Informed consent
was obtained from all participants prior to starting any of
the studies mentioned below. Full descriptions of the ex-
perimental protocol, including screenshots, are available
in the Supporting Information (Section S2).

All t-tests are Welch’s test for unequal variances un-
less otherwise noted [43], using the default settings in
t.test in R. For median tests, we use the two-sample
asymptotic Brown-Moody median test function from
the coin package in R. Bootstraps are performed with
10, 000 resamples using the boot.ci function from the
boot package in R, and the reverse percentile interval
method for constructing confidence intervals. To analyze
the calibration task for data scientists and faculty we fit
the following pre-registered linear mixed effects model
using the lme4 package in R:

|error| ∼ (1|participant) + psup + points (1)

where |error| is the absolute value between the true and
guessed probability of superiority, psup refers to the true
probability of superiority, and points is a binary indicator
variable that is 1 if the participant was in the SE + points
condition, 0 otherwise. Probability of superiorities aare
expressed as a percentage between 50% and 100%.
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To analyze the role of perceived probability of superior-
ity on overall editorial opinion for the data scientists and
the faculty, we used the following linear regression model:

overall ∼ psup + condition + controls (2)

where overall is the overall editorial judgment of
the extended abstract on a 5-point Likert scale, psup
refers to the estimated probability of superiority, and
controls refers to background variables reported in each
experiment.
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S1. SUPPLEMENTARY RESULTS

A. Experiment 1: Medical providers

Distribution estimates In addition to asking for explicit probability of superiority

estimates, we also asked participants to provide a full distribution of treatment and control

outcomes in each of the scenarios they saw. Each participant provided 100 data points

for each of four distribution builders, generating a total of 65,200 data points (Fig. 2C).

Comparing the top figure to the bottom figure within each scenario (column) shows that

those who saw SEs first generated narrower distributions overall compared to those who

saw SDs first. Using these distributions, we calculated the implied probability of superiority

between the treatment and control distributions for each participant. Participants who saw

the results of the hypothetical experiment presented using SEs generated distributions with

estimated probabilities of superiority that were 9.1 percentage points higher than participants

who saw SEs (t(160) = −4.92, p < .001) (Fig. S8A).

Participant feedback After completing the experiment, participants were given the

chance to provide open-ended comments about what they had seen. These responses

revealed widespread confusion about standard errors. For instance, one participant who was

shown standard errors but mistook them for standard deviations wrote, “‘Standard error’ is

incorrectly applied,” and estimated a 95% probability of superiority. Even when participants

understood the correct meaning of the error bars, they often made large overestimates: one

participant who saw SEs in the blood pressure medication scenario first wrote, “On a bell

curve 2 standard deviations from the mean should show 95% of all values whereas standard

error with a 95% confidence interval should give you a 95% confidence that the mean lies

within that range,” which is an accurate understanding of the different meaning of the error

bars, yet they still estimated the probability of superiority to be 95%.

Participant feedback also revealed the complex factors that influenced estimates of drug

pricing, where one participant wrote, “Providers would decide best treatments and costs

would be usually by a pharmacy committee”. Other participants mentioned using priors to

estimate drug pricing, with one participant sharing, “New drugs seem to cost more than older

or even popular therapies.” The length of hospitalization factored into participants’ decision

around pricing the COVID-19 medicine, with one participant writing, “My ‘willingness to
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pay’ cost estimate was based on a guess at how many days a patient might reduce their

admission.” and another writing, “I didn’t know the cost per day in the hospital so the dollar

estimate may be way off.”

B. Experiment 2: Data scientists

Perceived effect size and overall editorial recommendation We modeled each

participant’s overall editorial recommendation based on their effect size estimate for the study,

along with the condition as a fixed effect and their responses to the background questions as

random effects. This analysis reveals that, all else equal, an increase of one percentage point

in estimated probability of superiority was associated with an average increase of 0.016 points

in the overall editorial judgment (p < 0.001, using robust standard errors). In other words,

the average difference in editorial recommendation between participants who estimated the

probability of superiority to be 50 and those who estimated the probability of superiority to

be 100 was 0.8 points on a 5-point Likert scale (Fig. S2B).

Recalled meaning of error bars All participants saw error bars depicting 1 standard

error. In the SE + points condition only 46% (95% CI: [30%, 63%]) of participants correctly

recalled that this was the case, and in the SE only condition 61% (95% CI: [48%, 74%]) did

so. In the SE only condition, 65% (95% CI: [53%, 77%]) recalled seeing standard errors

(as opposed to standard deviations), and 51% (95% CI: [36%, 67%]) in the SE + points

condition recalled seeing standard errors. Regardless of what type of error bars they recalled,

participants frequently misinterpreted the meaning of the error bars at a rate indistinguishable

from random guessing.

Participant feedback After completing the experiment, participants provided open-

ended comments in response to a question asking for feedback on the task. A common

reaction among the data scientists was to confuse the meaning of the error bars, thinking

that they referred to a measure of outcome variability (such as standard deviations) rather

than inferential uncertainty of estimating the average. One participant wrote, “I think the

first graph was incorrect. The boxplot lines should have overlapped (mean of 6.8 + s.d. of

0.5 should have spanned 7.3 to 6.3 which included the mean of the other group).” However it

wasn’t the standard deviations that were being shown, but rather the standard errors, which

were an order of magnitude smaller.
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In the SE + points condition, a participant revealed to us their thought process for

estimating the probability of superiority: “Interesting study to guess probabilities - felt like I

should revise [sp] my big book of stats to calculate it exactly, but then just did it visually

based on relative population dispersions.” The presence of points allowed that participant to

simply visually estimate the effect size, avoiding any confusion about standard errors and

standard deviations.

C. Experiment 3: Faculty

Perceived effect size and overall editorial recommendation We find a similar

correlation between perceived effect size and overall editorial recommendation. All else equal,

we find that an increase of one percentage point in estimated probability of superiority

is associated with an average increase of 0.013 points in the overall editorial judgment

(p < 0.001, using robust standard errors). To put this in perspective, this translates to a 0.7

difference on a 5-point Likert scale between participants who perceived the probability of

superiority to be 50% compared to 100%.

Recalled meaning of error bars When asked to recall the meaning of the error bars,

(Fig. S5). only 55% (95% CI: [45%, 65%]) in the SE + points condition correctly recalled

them as representing one standard error above and below the mean (as opposed to two

standard errors, or one or two standard deviations), and similarly only 63% (95% CI: [54%,

71%]) in the SE only condition did so. In the SE only condition, 68% (95% CI: [60%, 76%])

recalled seeing standard errors (as opposed to standard deviations), and 64% (95% CI: [55%,

73%]) in the SE + points condition recalled seeing standard errors.

Participant feedback Even tenure-track faculty who teach statistics fell prey to the

illusion of predictability, but sometimes they realized this during the feedback stage. One

participant reflected, “Clever... I realize in retrospect I was initially not answering right

question. In years of teaching stat, I learned what you are learning now ... that even learned

colleagues have a difficult time keeping straight the distinction between the distribution of

a variable and the distribution of estimates of the mean of that variable.” We also saw a

similar confusion between standard deviations and standard errors of the estimated means,

just like with the data scientists. One participant writes, “I didn’t notice the 1 sd (rather

than 2 sd) confidence interval info right away,” when in fact the confidence interval did not
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show standard deviations at all, but rather standard errors.

S2. MATERIALS AND METHODS

A. Medical providers

1. Participants

The first experiment was conducted from a sampling frame of around 3,100 medical

providers with prescribing privileges. All participation was voluntary and no direct payment

was made; instead we donated Thanksgiving meals to a local food bank for each completion

of the experiment.

2. Procedures

We sought to design a scenario that would be easy to understand and appear realistic

and familiar to medical experts. After surveying peer-reviewed randomized controlled trials

(RCTs) published in medical journals [1], we created a vignette describing and visualizing

the results of a double-blind, placebo controlled RCT conducted on a new, hypothetical

medication designed to lower blood pressure in high-risk patients. To ensure that our

scenario was reasonably realistic, familiar, and easy to understand, we conducted eleven

30-minute structured interviews with physicians including domain experts in blood pressure

treatment (e.g., cardiologists, including an editor of a cardiology journal) and other physicians

who are highly educated but not necessarily experts in blood pressure treatment (e.g.,

residents; specialists outside of cardiology). We slightly modified our scenario to reflect

some experts’ recommendations, but the results of these interviews generally indicated

that the blood pressure treatment scenario we constructed was realistic and would be

presentable to our target population. We also constructed a COVID-19 medication scenario

to appear similar in structure and style to the blood pressure treatment scenario, but for

a medication designed to reduce time to recovery for patients hospitalized for COVID-

19. We tested our final design on Amazon’s Mechanical Turk platform before recruiting

medical professionals (see the Supplement for results). Our sampling method, interview

materials, respondent characteristics, and the results of these interviews are available in the
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Supplementary Materials.

We used both a between-subjects and within-subjects design for this experiment. For the

between-subjects portion of the design, participants were randomly assigned to see the results

of hypothetical trials for one of two types of medications: blood pressure medication or COVID-

19 medication. For each type of medication we constructed two versions of the results: both

had identical text, but one showed a figure depicting inferential uncertainty (with error bars en-

coding standard errors) while the other showed a figure depicting outcome variability (with er-

ror bars encoding standard deviations). In the within-subjects part of the design we randomly

varied which of these two versions of the results participants saw first (SEs first or SDs first).

In all cases, the hypothetical RCTs involved 300 patients, with 150 patients in the

treatment group and 150 in the control group. The text reported the average outcome in each

group and described the type of error bars shown in the accompanying figure: either 95%

confidence intervals (approximately 2 standard errors above and below the mean) or 95%

predictive intervals (2 standard deviations above and below the mean). We explicitly clarified

the meaning of the error bars, using bold text to assert for the SD condition that “the error

bars in the figure error bars in the figure show two standard deviations above

and below the average in each group. Predictive intervals like these are constructed

such that they should, in the long run, contain outcomes for 95% of similar patients in

future studies.” Similarly, for the SE condition, we assert, “The error bars in the figure

show two standard errors above and below the average in each group. Confidence

intervals like these are constructed such that 95% percent of them should, in the long run,

contain the true average for similar patients in future studies.”

After reading these results, participants were asked to estimate the probability that a

randomly selected patient in the treatment group had a better outcome than a randomly

selected patient in the control group. For the blood pressure scenario this read as follows:

“What is your best estimate of the probability that, after the experiment, a randomly selected

patient in the treatment group had a lower systolic blood pressure than a randomly selected

patient in the control group?” For the COVID-19 scenario participants were instead asked:

“What is your best estimate of the probability that a randomly selected patient in the

treatment group recovered more quickly than a randomly selected patient in the control

group?” In both cases participants were informed that “A 50% probability would indicate

no difference in outcomes between the treatment and control groups.” Input validation was
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performed to ensure that the estimate was between 50-100%.

Following this, participants were asked to estimate how much the treatment would worth

to patients. In the blood pressure scenario we asked: “Based on its effectiveness and the price

of other medications, how much do you think a 30 day supply of this new medication would

be worth to patients with high blood pressure? For reference, a 30 day supply of generic ACE

inhibitors, also used to lower blood pressure, costs about $20.” For the COVID-19 scenario

this was phrase as follows: “Based on its effectiveness and the price of other medications,

how much do you think a 5 day supply of this new medication would be worth to patients

hospitalized with COVID-19? For reference, a 5 day supply of the most popular drug used

for this purpose costs about $2500.”

After making these effect size and value estimates, the details of the RCT and the

accompanying figure were hidden from participants and they were asked to recall what

kind of error bars were shown in the plot on the previous page: “standard errors, showing

uncertainty in estimating the average in each condition” or “standard deviations, showing

the variation in individual outcomes in each condition”. Next, on a separate page, each

participant was asked to specify a full distribution for what they thought outcomes were

for 100 patients in each of the treatment and control conditions of the study using the

Distribution Builder tool.

This concluded the first half of the experiment, after which participants were informed

that they would see “another scenario” for the same type of medication and repeat the entire

process. Although not revealed to them, the second scenario was identical to the first except

for the accompanying figure—those who saw SEs first saw the exact same results but with

the figure depicting SDs, and vice versa. They repeated all of the steps specified above, from

reading about the next RCT to providing Distribution Builder estimates.

With this completed, participants were given an optional background survey, which we

used to assess their medical and statistical training. We asked for sources of informal and

formal training in research and/or statistics, comfort with understanding the results of RCTs,

experience producing or consuming results of RCTs, their role in the medical field, and

how long they have worked in medicine. Full details of these questions are provided in the

supplement. This concluded the experiment.
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B. Data scientists

1. Participants

The second experiment was conducted from a sampling frame of around 1,600 data

scientists at a large software company. All participation was voluntary and no direct payment

was made; instead we donated one set of personal protective equipment to the United Nations

COVID-19 relief effort on behalf of each participant who completed the experiment.

2. Procedures

Participants were randomly assigned to one of two conditions in a between subjects design:

the “SE only” condition where figures depicted inferential uncertainty only (showing standard

errors around an estimated mean) or the “SE + points” condition where figures depicted

inferential uncertainty and outcome variability (showing standard errors around an estimated

mean plus the individual data points from which the mean is estimated). Then participants

were asked to complete two tasks: first they were asked to read and review an extended

abstract describing a psychology experiment and second they were asked to make a series of

effect size estimates for simulated data.

For the first task we created an extended abstract based on a highly-cited psychology

study testing the impacts of playing violent video games on aggressive behaviors in the

laboratory [2]. In the study, undergraduates from a Midwestern introduction to psychology

course were assigned to play either non-violent video games (control), or violent video games

(treatment). Then in a subsequent task, their aggressiveness was measured as a continuous

score. We created an extended abstract using the framing and results from the actual paper,

including the means, standard deviation, and effect size of their experiment. We increased the

sample size within their study from 210 participants to 800 participants, to reflect changing

standards within experimental psychology around statistical power and sample sizes.

In our experiment all participants saw the same text for this extended abstract, with

the accompanying figure and caption varying by experimental condition. Specifically, for

participants in the SE only condition, we displayed the outcomes using only the means and

one standard error above and one standard error below the means. For the SE + points

condition, we also showed the individual outcomes (Fig. S12). However, the real outcomes
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were not available, so we generated synthetic data to match the summary statistics from the

paper. The paper did not provide standard deviations for the data, but it did provide means

and Cohen’s d, which is sufficient for recovering the pooled standard deviation. The violent

video game condition had a mean of 6.81 and the control condition had a mean of 6.65, and

Cohen’s d was 0.31, yielding a pooled standard deviation of 0.52. To avoid making the two

distributions identical, we rounded the standard deviations for the treatment and control

to the nearest hundredth place, subtracted 0.01 for the treatment standard deviation, and

added 0.01 for the control standard deviation. This yielded standard deviations of 0.51 for

treatment and 0.53 for control. We generated standard normal data for each condition, and

recentered and scaled to match the means and standard deviations above.

We collected two sets of dependent variables for participants’ reviews of the extended

abstract. The first were editorial judgments where participants rated the “Appeal of

this work to a broad interdisciplinary audience” (from 1=Not at all appealing to 5=Very

appealing), “How sufficient is the experiment’s sample size?” (from 1=Completely insufficient

to 5=Completely sufficient), and “Overall recommendation of abstract for publication”

(reverse coded, from 1=Strong accept to 5=Strong reject, where 2=Accept, 3=Possible reject,

and 4=Reject).

The second type of dependent variable was participants’ estimates of the probability of

superiority for the effect described in the abstract. Specifically, we asked: “What is the

probability that a randomly selected member of the treatment group (someone who played a

violent video game) had a higher aggressiveness score than a randomly selected member of a

control group (someone who played a non-violent video game)? (A 50% probability indicates

no difference in outcomes between the treatment and control groups, on average.)” Input

validation was performed to ensure that the estimate was between 50-100%.

Following this we tested participants’ understanding of what they had seen by hiding the

figure and abstract and asking whether the error bars on the figure on the previous page

showed 1 standard error, 2 standard errors, 1 standard deviation, or 2 standard deviations

above and below the mean. We also asked participants whether the error bars conceptually

captured “uncertainty in estimating the average in each condition” or “variation in individual

outcomes in each condition”.

After reviewing the extended abstract, we presented participants with the second phase

of the experiment: a series of five hypothetical outcomes from studies with a treatment
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and a control group. We generated the means of the two outcomes as uniform random

variables between 0 and 3, picking the larger of the two as the treatment. Then we generated

the variance of each outcome as a uniform random variable between 0.5 and 2. Lastly, we

picked sample sizes for the two experiments by drawing from a binomial distribution with

true parameter p = 1/2 and n uniformly random between 100 and 400. We computed

the probability of superiority and performed rejection sampling until we found a scenario

with the true probability of superiority between 50% and 75%. These parameters produced

effect sizes roughly uniformly in that range. We presented the sample sizes, the sample

means, and the standard errors on these estimates for each experiment [3], and manipulated

whether participants saw visualizations depicting only inferential uncertainty or inferential

uncertainty and outcome variability depending on their experimental condition. Then we

asked participants for their evaluation of the probability of superiority of the treatment over

the control. For participants who saw outcome variability (points) in the visualization, we

drew the points from the distributions above, but to ensure that the points aligned with the

true probability of superiority, we centered and scaled the points so that their mean and

variance matched the mean and variance of the hidden parameters (Fig. S13).

To conclude the experiment we presented participants with several questions about their

scientific and statistical background, which we used in our preregistered exclusion criteria

to filter out participants without some experience in science and statistics. In particular,

we excluded any participants whose responses indicate that a) they have had no formal

or informal training in research, research methods, or statistics; b) they are “not at all”

comfortable understanding the results of randomized experiments; or c) that they have never

done any of a set of 6 activities related to expertise in this area (reading scientific results,

publishing a scientific paper, working on a randomized experiment, took a course in statistics

or a related field, analyzed data outside of a course requirement, or used statistical software).

As per our preregistration, if a participant did not fully complete a part of the experiment

(Part 1 or Part 2), we eliminated their incomplete responses from the relevant analysis.
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C. Faculty

1. Participants

The third experiment was conducted using a stratified sample of 9,000 tenure-track

psychologists, sociologists, physicists, biologists, business faculty, and computer scientists

from PhD-granting institutions in the US. All participation was voluntary and no direct

payment was made; instead we donated one set of personal protective equipment to the

United Nations COVID-19 relief effort on behalf of each participant who completed the

experiment.

2. Procedures

This experiment different from the previous one only in the participant population and the

relevant background/experience questions. We still randomly assigned participants to one of

two display conditions: inferential uncertainty (“SE only”) or inferential uncertainty with

outcome variability (“SE + points”). Participants completed the same editorial judgment

task and statistical estimation task.

Background questions. After the statistical estimation task, we presented participants

with background questions. This time, we preregistered different questions and exclusion

criteria. In particular, we excluded any participants whose responses indicate that a) they are

not tenure-track faculty at a PhD-granting institution, b) they are ”not at all” comfortable

understanding inferential statistics and hypothesis tests, c) they are ”not at all” comfortable

analyzing data and using statistical software, or d) that they have never reviewed any papers

during their academic career. As in Experiment 2, if a participant did not complete a part

of the experiment (Part 1 or Part 2), we eliminated their incomplete responses from the

relevant analysis.

11



S3. PRELIMINARY STUDY OF PHYSICIANS USING IN-DEPTH-INTERVIEWS

A. Recruitment and Participants

During May and June 2020, we conducted ten individual, 30-minute in-depth-interviews

(IDIs) with physicians who belonged to the target population, and one additional interview

with a physician outside of the target population. We recruited participants using the

snowball method, where at the end of each interview, an interviewee was asked to recommend

other physicians who have relevant expertise or who might otherwise be interested in

participating in an interview. These recommended physicians were then invited to participate

via personalized emails. All interviews were conducted using video calling over the internet

by the same interviewer (PRH). Participation was voluntary and respondents were not paid.

All physicians who were interviewed were excluded from the list of eligible participants for

the full experiment.

Our final sample of eleven participants comprised practicing physicians across a variety of

specialties, career stages, and levels of involvement in research. Specialties included cardiology

(3), developmental pediatrics (2), psychiatry (2), internal medicine (hospitalist) (1), pediatric

gastroenterology (1), geriatric medicine and neurology (1), and rheumatology (1). Two

respondents were in their residency training at the time the interviews were conducted

and the remaining nine were distributed across career stages. All respondents had some

experience with research and three respondents reported substantial current involvement in

research, including one editor of a cardiology journal and another physician with over 100

peer-reviewed publications in cardiology and related fields.

B. Procedure

At the start of each interview, each participant was given a brief overview of the research

topic and the purpose of the interview. After introducing himself, the interviewer used the

following script to orient the participant: “We are interested in studying how healthcare

and medical professionals judge the effectiveness of treatments after viewing some example

visualizations of research conducted on those treatments. Our aim is to study treatments

that are modern, realistic, and familiar to healthcare professionals.”

After asking the interviewee for permission to share materials via screenshare, the inter-
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viewer displayed a single full-screen image of the primary task, including a description of the

results of a hypothetical RCT, a visualization displaying the results of this RCT using error

bars that represented either confidence intervals or standard deviations, and the primary

dependent measure that requested participants to provide an estimate for the probability of

superiority. The participant was given unlimited time to verbally respond to this measure.

After recording the participant’s response, the interviewer then presented the task again,

noting that the visualization had changed—it now displayed whichever set of error bars was

not displayed before. Participants then provided a probability of superiority estimate for

this new scenario.

After completing the task, the participant was asked to respond freely to the prompt, “Did

anything in the graph, the description, or the question stand out as confusing or unclear?”

The interviewer took notes on responses to this question, occasionally asking the participant

to give more details to relevant observations. Participants were allowed as much time as they

needed to react and respond to the scenario and task.

For the remainder of the interview, the interviewer selected targeted questions from a

pre-constructed list (see instrument in Appendix). These primarily comprised questions

about the hypothetical blood pressure medication RCT scenario that we had designed.

These questions were designed to solicit participants’ advice regarding the setup, language,

experimental approach, figure, and numbers we had used to develop the scenario. In some

cases, participants were asked whether specific alternative scenarios (e.g., a design using

a comparative effectiveness trial; an outcome measure using an average change score from

pre- to post-treatment) would be more realistic, familiar, or easier to comprehend than the

scenario we had designed (using, e.g., a double-blind, placebo-controlled trial, displaying post-

treatment systolic blood pressures as outcomes). Other targeted questions asked participants

to comment on our dependent measures, including probability of superiority and willingness

to pay for or prescribe the experimental medication.

When the session was nearly over, the interviewer asked the participant if they had

any questions about the research or task, requested recommendations for other physicians

who might be interested in being interviewed, offered to send the participant a copy of the

published report, and thanked them for their time. After the participant had left the session,

the interviewer summarized and synthesized their responses into a tracking spreadsheet.
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C. Results

We present the results of these interviews organized according to what we sought to learn.

First, we sought to expose a small sample of our target population to the experimental task

to observe whether interviewees’ responses were consistent with our hypothesized pattern.

To this end, we asked each interviewee to provide a probability of superiority estimate

immediately after viewing each scenario. Nearly all participants (10/11) reported that the

probability of superiority was lower when viewing the figure displaying confidence intervals

than when viewing the figure displaying error bars representing standard deviations. We note

that some respondents preferred not to give specific numeric estimates, instead preferring

to use descriptive terms (e.g., “high;” “very high;” “almost 100%;” “lower than the last

one,” etc.). This prevented us from computing descriptive statistics, but it was nevertheless

striking that most of our sample made estimates that were consistent with the hypothesized

pattern of results. The participant who did not show this pattern said that she would assign

the same probability of superiority estimate in both conditions.

Second, we sought expert feedback on the level of familiarity, believability, and accuracy

of the scenario we had constructed: the results of an RCT comparing an experimental

blood pressure medication against a placebo control. Responses to the open-ended question

immediately following the experimental task, and to more targeted questions about our design

choices, indicated that participants generally found our scenario to be realistic, believable, and

familiar. All eleven participants recommended that the hypothetical RCT we present should

compare a treatment to a placebo control (as opposed to another drug or type of treatment).

Of the eight participants who were asked the targeted question about which outcome measure

to present, six agreed that absolute post-treatment blood pressure was the most appropriate

outcome measure to display (one preferred lines indicating pre-to-post-treatment change;

one simply stated that multi-time point treatment displays would be interesting for future

study). Most participants preferred that we use generic terms like “treatment” and “control,”

rather than naming a specific drug in our hypothetical RCT; one participant preferred a

specific drug name, and one did not express a preference.

Third, we solicited reactions and points of confusion in response to our dependent measures.

Specifically, we asked participants to comment on how we could make the probability of

superiority measure clearer, and how we might phrase a measure of willingness to pay for (or
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prescribe) the experimental treatment. Most participants (8/11) recommended that we do

nothing to change the probability of superiority measure—that it is unlikely we would be able

to improve it. Some of these participants (2) noted that it was difficult to reason in this way

but nevertheless concluded that it was acceptable as written. One participant reported not

liking the measure but did not recommend any alternatives. Several participants (4) explicitly

mentioned that the descriptive sentence clarifying that “a 50% probability would indicate no

difference in outcomes between the treatment and control group” was helpful. Participants’

responses to a willingness to pay for (or prescribe) measure were mixed. Participants did

not complete such a measure as part of the interview; the interviewer described what this

measure might look like and asked participants to comment on whether it would be a useful

measure to collect. There was little consensus about the usefulness or feasibility of this

measure; proponents described a measure of this kind as valuable and interesting, while

detractors commented that there are too many external factors to consider when thinking

about paying for or prescribing a medication.

D. Appendix: Interview Protocol and Questions for Physicians

Give brief overview: we are interested in studying how healthcare and medical profes-

sionals judge the effectiveness of treatments after viewing some example visualizations of

research conducted on those treatments. Our aim is to study treatments that are modern,

realistic, and familiar to healthcare professionals.

[Ask interviewee to complete the task using an example visualization.]

SD version probability of superiority answer:

SEM version probability of superiority answer:

Free-response question: Did anything in the graph, the description, or the question

stand out as confusing or unclear?

Targeted questions about setup:

• When thinking about the effectiveness of blood pressure treatments, is it easier to

think about how effective a treatment is relative to:

1. A nondescript control (i.e., the standard of care);

2. Another drug or behavioral treatment regimen;
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3. Nothing (i.e., to what would happen if no drug or behavioral therapy was intro-

duced)

• When thinking about what improvement means after undergoing a treatment for high

blood pressure, is it easier to conceptualize clinical improvement as:

1. An average change score. (For example, those who received the treatment lowered

their blood pressure by an average of 50 points. Those who did not receive the

treatment lowered their blood pressure by an average of 10 points.)

2. An average pre- and post-measure. (o For example, those who received the

treatment began with an average measure of 160 and ended with an average

measure of 110 points. Those who received the treatment began with an average

measure of 160 and ended with an average measure of 150 points.)

• As part of this research, we are interested in learning how effective a new treatment

would have to be for a provider to seriously consider prescribing it instead of what they

typically prescribe. In your opinion, how likely are most healthcare providers to begin

prescribing a new drug or treatment (relative to what they are used to prescribing)?

In other words, how much improvement, and how much certainty about that level of

improvement, would be required for most providers to implement new prescribing going

forward? You can assume that the new drug is more effective than the old one, and

all external considerations (like adverse side effects, cost, etc.) are roughly equivalent

between the new and old treatment.

• Consider your understanding of blood pressure treatments. Can you list a few common

drug or treatment names that other healthcare providers will likely be familiar with?

Can you think of any good baseline or experimental drugs or treatments we could use

or adapt?

Questions about dependent measures:

• Did the Probability of Superiority item make sense? Is there any way we can make

this clearer?

• Are there any other items, or language that you are used to seeing, that can help us

measure people’s perception of how effective one treatment is over another?
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• Willingness to Pay: do you have any ideas for a way to make this kind of measure

feasible?

• Willingness to Prescribe: do you have any ideas for a way to make this kind of measure

feasible?

S4. STIMULI FOR MEDICAL PROVIDER EXPERIMENT

See Fig S1 for the different figures used in the experiment. Participants were randomly

assigned to one of the scenarios (rows) and then randomly assigned to see either the SE

or the SD version of the figure first, followed by the other figure next. See Fig S15 for a

screenshot of the entire page presenting the COVID-19 medication scenario, and Fig S14 for

a screenshot of the page presenting the blood pressure medication scenario.

S5. BACKGROUND QUESTIONS FOR MEDICAL PROVIDERS

A. Risk of re-identification

We removed the background questions from the publicly released data to avoid the risk of

re-identification of medical providers. The background questions were unnecessary for any of

the main analyses, and only used to perform analyses of the aggregate analyses.

B. Background questions

1. What sources of formal or informal training or education have you had in research,

research methods, or statistics? Select all that apply.

• Undergraduate coursework

• Master’s program in a data science related field

• PhD program in a data science related field

• Postgraduate coursework (e.g., during internship, fellowship, etc...)

• Continuing education courses

• Self-instruction via textbooks or peer-reviewed literature
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FIG. S1. Experimental stimuli for medical providers The statistical graphic showing (left

column) standard errors or (right column) standard deviations in either (top row) the blood pressure

medication scenario or (bottom row) the COVID-19 medication scenario for the medical provider

participants.

• Other

2. How comfortable are you with understanding the results of randomized controlled

trials, including reading graphs and plots?

• Not at all

• Somewhat
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• Moderately

• Very

• Extremely

3. Have you ever done any of the following? Select all that apply.

• Read the results of a randomized controlled trial in a peer-reviewed journal article

• Changed what you typically prescribed or recommend after personally reading

the results of a randomized controlled trial in a peer-reviewed journal article

• Published a scientific paper in a peer-reviewed journal

• Conducted or worked on a team conducting a randomized controlled trial

• Took a course or class in statistics, biostatistics, or research methods (online,

in-person, CME, etc.)

• Analyzed data for statistical significance outside of a course requirement

• Used SPSS, R, Python, Stata, SAS, or any other statistical software

• None of the above

4. Are you currently involved in research?

• Yes

• No

5. Please select the option that best describes you below.

• Doctor (MD or DO)

• Physician Assistant

• Nurse Practitioner

• Non-prescribing clinician or staff without clinical credential

• Other

6. How long have you been working in the medical field?

• Less than 1 year
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• 1–2 years

• 3–5 years

• 6–10 years

• 11–20 years

• 21–30 years

• 30+ years

S6. BACKGROUND QUESTIONS FOR DATA SCIENTISTS

1. What sources of formal or informal training or education have you had in research,

research methods, or statistics? Select all that apply.

• Undergraduate coursework

• Master’s program in a data science related field

• PhD program in a data science related field

• Postgraduate coursework (e.g., during internship, fellowship, etc...)

• Continuing education courses

• Self-instruction via textbooks or peer-reviewed literature

• Other

2. How comfortable are you with understanding the results of randomized controlled

trials, including reading graphs and plots?

• Not at all

• Somewhat

• Moderately

• Very

• Extremely

3. Have you ever done any of the following? Select all that apply.

• Read the results of a randomized controlled trial in a peer-reviewed journal article
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• Changed what you typically prescribed or recommend after personally reading

the results of a randomized controlled trial in a peer-reviewed journal article

• Published a scientific paper in a peer-reviewed journal

• Conducted or worked on a team conducting a randomized controlled trial

• Took a course or class in statistics, biostatistics, or research methods (online,

in-person, CME, etc.)

• Analyzed data for statistical significance outside of a course requirement

• Used SPSS, R, Python, Stata, SAS, or any other statistical software

• None of the above

4. Are you currently involved in research?

• Yes

• No

5. How long have you been working in the data science field?

• Less than 1 year

• 1–2 years

• 3–5 years

• 6–10 years

• 11–20 years

• 20+ years

S7. BACKGROUND QUESTIONS FOR FACULTY

1. Are you currently a tenure-track faculty at a PhD granting institution?

• Yes

• No

2. What best describes the department you’re primarily affiliated with? (Choose ”Other”

if none are at all appropriate)
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• Business

• Computer science

• Physical sciences

• Life sciences

• Social sciences

• Mathematics or Statistics

• Other

3. How comfortable are you with understanding inferential statistics and hypothesis tests?

• Not at all

• Somewhat

• Moderately

• Very

• Extremely

4. How comfortable are you with analyzing data and using statistical software?

• Not at all

• Somewhat

• Moderately

• Very

• Extremely

5. Have you ever taught statistics or a related course at the undergraduate or graduate

level?

• Yes

• No

6. How many papers have you reviewed during your academic career?

• 0

22



• 1–10

• 11–20

• 21–50

• 51–100

• More than 100
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effect sizes for each stimulus participants were shown, although doing so might be relatively

difficult.
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FIG. S2. Probability of superiority vs. overall editorial judgment Overall editorial judgment

of (A) faculty and (B) data science participants as a function of their estimated probability of

superiority. Regression line shows estimated marginal means after controlling for background

variables, with shaded interval representing the 95% confidence interval of the estimated marginal

mean.
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FIG. S3. Within-subjects results for medical providers Difference in individual medical

providers’ estimated probability of superiority when seeing SEs vs. SDs. Black dot is the mean,

with error bars depicting one standard error above and one standard error below the mean.
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FIG. S4. Recall of data scientist participants Displayed is the sample mean and one standard

error above and one standard error below the mean of the binary outcome of whether the data

scientist participant correctly recalled that the error bars in the hypothetical study depicted

uncertainty in estimating the average. In particular, we asked “What did the error bars on the

previous page capture conceptually?” with possible answers “Uncertainty in estimating the average

in each condition” and “Variation in individual outcomes in each condition”.
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FIG. S5. Recall of faculty participants For both conditions, we depict the proportion of faculty

participants who correctly recalled that the error bars in the hypothetical study depicted uncertainty

in estimating the average (solid dot) as well as one standard error above and one standard error

below the mean. In particular, we asked “What did the error bars on the previous page capture

conceptually?” with possible answers “Uncertainty in estimating the average in each condition” and

“Variation in individual outcomes in each condition”.
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FIG. S6. Recall of medical provider participants For the first scenario, we depict the proportion

of medical provider participants who recalled the correct meaning of the error bars in the hypothetical

study they had seen by condition. We show the average (solid dot) as well as one standard error

above and one standard error below the mean. In particular, we asked “What kind of error bars

were shown in the plot on the previous page?” with possible answers “Standard errors, showing

uncertainty in estimating the average in each condition” and “Standard deviations, showing the

variation in individual outcomes in each condition”.
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FIG. S7. Results for mechanical turkers (A) The estimated probability of superiority of each

treatment is depicted for each turker, with black dot and error bars signifying the mean and one

standard error of the mean, above and below the mean, as well as dashed lines representing the

true underlying effect size. (B) The perceived value of treatment is shown with a logarithmic y axis,

and the black dot and error bars depict the median with 95% bootstrapped confidence intervals.

(C) Perceived distributions (bars) versus actual distributions (line) of the effectiveness of treatment.
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FIG. S8. Implied probability of superiority from distribution builders Implied probability

of superiority for (A) medical provider and (B) mechanical turk participants. For each participant,

we calculate the implied probability of superiority between the treatment and control conditions

for the first hypothetical medication they see. The average probability of superiority is the black

dot, and the error bar shows one standard error of the mean above and below the mean for each

condition.
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FIG. S9. Background of the medical practitioner participants Responses to the back-

ground questions at the end of the study for the medical practitioners. NP=Nurse Practitioner,

PA=Physician Assistant.
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FIG. S10. Background of the data scientist participants. We asked participants for their

comfort between 1 (Not at all comfortable) to 5 (Extremely comfortable) with “understanding the

results of randomized experiments, including reading graphs and plots” (top). We also asked “How

long have you been working in the data science field?” (middle). We asked participants “Have you

ever done any of the following?” (“Read the results of a randomized experiment in a peer-reviewed

journal”, “Published a scientific paper in a peer-reviewed journal”, “Conducted or worked on a

team conducting a randomized controlled trial such as an A/B test”, “Took a course or class in

statistics, data science, or research methods (online, in-person, etc)”, “Analyzed data for statistical

significance outside of a course requirement”, or “Used SPSS, R, Stata, SAS, or any other statistical

software.”) and we display the number of selected checkboxes (bottom).
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FIG. S11. Background of faculty participants Faculty self-reported their discipline, and even

though we restricted our survey to CS, business, biology, physics, and psychology, we had some

faculty self-identify as mathematics/statistics or other. Most faculty were moderately comfortable

with statistics and data analysis. Our participants tended to be strongly familiar with the peer-review

system, with over half of the participants reviewing over 100 papers.
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FIG. S12. Editorial study screenshot The extended abstract shown to data scientist and faculty

participants in the SE + Points condition (top) and the SE Only (bottom) condition. The text is

exactly identical except for the presentation of the figure and one sentence in the figure caption.
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FIG. S13. Statistical estimation task screenshot Screenshot of the statistical estimation task

(Part 2) in the experiment for data scientists and faculty in the SE + points condition. Participants

are asked to read a hypothetical outcome of an experiment. The experiment has randomly generated

outcomes from a known distribution, so we can compute the probability of superiority from those

distributions. The participant is asked to guess the probability of superiority.

36



FIG. S14. Medical providers experiment screenshot: blood pressure medication sce-

nario Screenshot of the experiment for medical provider and Mechanical Turk participants in the

blood pressure medication scenario and the outcome variability (SD) condition. Participants are

asked to read a hypothetical outcome of an RCT. The participant then estimates the perceived

probability of superiority of that RCT.

37



FIG. S15. Medical providers experiment screenshot: COVID-19 medication scenario

Screenshot of the experiment for medical provider and Mechanical Turk participants in the COVID-

19 medication scenario and the outcome variability (SD) condition. Participants are asked to read

a hypothetical outcome of an RCT. The participant then estimates the perceived probability of

superiority of that RCT.
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FIG. S16. Distribution builder screenshot Screenshot of the distribution builder for medical

provider participants, where the treatment condition has been filled in, and the control condition

has not been filled in yet. The distribution builder allows us to elicit participants’ estimate of the

entire outcome distribution for both conditions.
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